
July, 2007

Print Forms as Users See Them

Using the GDIPlusX classes and some ingenuity, you can even print
scrollable forms.

By Tamar E. Granor, technical editor

I'm working on an application where I'm building complex forms out of

a variety of container, shape, and line objects. The forms are a
graphical representation of real-world objects and users can design the

objects in question by adding and removing items from the forms and

moving things around. They need the ability to print what they've
designed.

What doesn't work

I considered several solutions to this problem. My first thought was to

use Windows' built-in PrintScreen ability, but it can't print a single VFP
form. You can use it to grab the entire Windows desktop (PrintScrn) or

just the current application (Alt-PrintScrn), but there's no way to tell it

to grab just a form.

Next, I considered using a third-party tool, like SnagIt, that can be

automated; but my client didn't want to pay for an add-on for every
installation.

My next thought was to create a report to replicate the screen. But I
wasn't enthusiastic about this approach because I knew how much

work went into building the forms and anticipated a similar complexity
level.

Turning to GDIPlusX

At that point, fortunately, I realized that the GDIPlusX project that's
part of VFPX might offer an alternative way to build a report. As I

looked through the examples that come with GDIPlusX, I found one to
convert a form into a bitmap. Not only was this exactly what I needed,

but it required only a few lines of code.

GDI+ is a DLL that centralizes graphics-handling in much the same

way that the Windows printing system centralizes output. See
Christof's article in the July 2004 issue for an explanation of GDI+ and

how it works (http://My.Advisor.com/doc/XXXXX).

GDIPlusX is a set of class libraries designed to simplify integrating

GDI+ into applications. The objects and methods are modeled after
the GDI+ classes in the .NET framework (the System.Drawing

namespace) and the developers of GDIPlusX have even done the work
to let us refer to objects in the same way you would when working

with System.Drawing.

I added a PrintObject method to my form base class. (I couldn't call it

Print, because that's a built-in form method.) To use any of the
GDIPlusX classes, you need to instantiate the xfcSystem class found in

System.VCX. The examples that come with GDIPlusX add a property to
the _Screen object for this. I chose instead to add a form-level

property to hold this reference and populated it in the form's Load
method, so it would be available throughout the form:

This.oGDIPlusSystem = NEWOBJECT("xfcSystem","system.vcx")

In the PrintObject method, the code to capture the screen and save it
to a bitmap file is quite simple:

cFileName = FORCEEXT(FORCEPATH(This.Name, SYS(2023)), ;
 "BMP")
CLEAR RESOURCES (cFileName)
loCaptureBmp = ;
 This.oGDIPlusSystem.Drawing.Bitmap.FromScreen(;
 Thisform.HWnd)
loCaptureBmp.Save(cFileName, ;
 This.oGDIPlusSystem.Drawing.Imaging.ImageFormat.BMP)

The first line creates a filename by adding a path and a BMP extension

to the form's Name. I considered using the form's Caption instead, but
the captions of these forms can include some characters that aren't

permitted in file names. The filename doesn't really matter because
the file is deleted at the end of the method.

VFP likes to cache things, including graphical objects. The CLEAR
RESOURCES command ensures that the code that prints the bitmap

later in this method doesn't reuse a previous version of the bitmap.

The last two lines here capture and save the form. The

System.Drawing.Bitmap.FromScreen method creates a bitmap object

from the form whose hWnd is passed in. The Save method of the
bitmap object saves the image in the specified file and format. Note

that you can actually save in a variety of formats, by changing the
second parameter passed to Save. The method supports a number of

other formats, include JPEG, TIFF, and GIF.

Printing the image

Getting the bitmap printed turned out to be a little more complicated
than I expected. My original plan was to use the ShellExecute API

function (through the _ShellExecute class in the FoxPro Foundation
classes). However, my tests revealed that, on my machine, there was

no Print action defined for bitmap files, nor for any of the other
common graphic formats. If this Print action wasn't defined on my

machine, it probably wouldn't be on the user's machines either.

I found an alternative approach on Cesar Chalom's blog at
http://weblogs.foxite.com/cesarchalom/archive/2007/01/17/3143.asp

x. (Incidentally, Cesar is one of the principal contributors to GDIPlusX.)
The basic idea is to create a report programmatically and add an

image object to it, pointing that object to the file you want to print.
Then run the report and, finally, delete it. Cesar's code, which is

adapted from a Microsoft Knowledge Base article, uses two methods.
Because I needed this only for a very specific purpose, I flattened

Cesar's code and put it all within the PrintObject method.

In my application, users can resize the forms. So I didn't know in

advance whether a given form would print better in portrait mode or
landscape mode. But I wanted to use whichever made the most sense

for a given form. I added this line to figure out which mode to use:

lPortrait = (This.Height > This.Width)

Then, I was able to use the lPortrait variable to configure the report to

use the appropriate orientation. Here's my version of the reporting
code:

LOCAL lnArea
lnArea = SELECT()
CREATE CURSOR ReportTemp (ImageFile c(150))
INSERT INTO ReportTemp VALUES (m.cFileName)
CREATE REPORT ___ImageReport FROM ReportTemp
*-- Open the report file (FRX) as a table.
USE "___ImageReport.FRX" IN 0 ALIAS TheReport EXCLUSIVE
SELECT TheReport
*-- Remove from the FRX the auto generated fields
*-- and labels
DELETE FROM TheReport WHERE ObjType = 5 AND ;
 ObjCode = 0
DELETE FROM TheReport WHERE ObjType = 8 AND ;
 ObjCode = 0
*-- Find the header record (normally the first one,
*-- but who knows)
LOCATE FOR ObjType = 1 AND ObjCode = 53
IF FOUND()

http://weblogs.foxite.com/cesarchalom/archive/2007/01/17/3143.aspx
http://weblogs.foxite.com/cesarchalom/archive/2007/01/17/3143.aspx

 REPLACE Tag WITH "",; && Clears the Tag, Tag2
 Tag2 WITH ""

 IF NOT m.lPortrait
 REPLACE Expr WITH "ORIENTATION=1"
 ENDIF
ENDIF

*-- Add a Picture/OLE Bound control to the report by
*-- inserting a record with appropriate values. Using
*-- an object that is based on the EMPTY class here
*-- and the GATHER NAME class later to insert the
*-- record makes it easier to see which values line
*-- up to which fields (when compared to a large
*-- SQL-INSERT command).
LOCAL loNewRecObj AS EMPTY
loNewRecObj = NEWOBJECT('EMPTY')
ADDPROPERTY(loNewRecObj, 'PLATFORM', 'WINDOWS')
ADDPROPERTY(loNewRecObj, 'Uniqueid', SYS(2015))
ADDPROPERTY(loNewRecObj, 'ObjType', 17)
 && "Picture/OLE Bound Control"
ADDPROPERTY(loNewRecObj, 'NAME', ;
 'ReportTemp.ImageFile')
 && The object ref to the IMAGE object.
ADDPROPERTY(loNewRecObj, 'Hpos', 100)
ADDPROPERTY(loNewRecObj, 'Vpos', 600)
ADDPROPERTY(loNewRecObj, 'HEIGHT', 100000)
ADDPROPERTY(loNewRecObj, 'WIDTH', 100000)
ADDPROPERTY(loNewRecObj, 'DOUBLE', .T.)
 && Picture is centered in the control
ADDPROPERTY(loNewRecObj, 'Supalways', .T.)
*-- For the Picture/OLE Bound control, the contents
*-- of the OFFSET field specify whether Filename (0),
*-- General field name (1), or Expression (2)
*-- is the source.
ADDPROPERTY(loNewRecObj, 'Offset', 2)
*-- Add the Picture/OLE Bound control record.
APPEND BLANK IN TheReport
GATHER NAME loNewRecObj MEMO
*-- Clean up and then close the report table.
PACK
USE IN SELECT('TheReport')
*-- Make sure that the cursor is selected,
*-- and then run the report to preview using
*-- the instance of our Report Listener.
SELECT ReportTemp
REPORT FORM "___ImageReport" TO PRINT
DELETE FILE "___ImageReport.fr*"
SELECT (lnArea)

Dealing with scrolling

At this point, I would have been done, except for one thing. The forms
in question are scrollable and the users want to see everything on the

form, not just the part that's currently displayed on screen.

I needed to resize the forms so that everything on the form was

visible. This was complicated by the fact that the forms use anchoring
to keep controls where they should be, and one of the forms enlarges

and shrinks objects when the form is resized, rather than showing

more objects. A form property, lChangeFontOnResize, controls this
behavior.

To handle all these issues, I added two methods, ShowAll and Restore,
that enlarge the form to make all its objects visible and restore it to its

previous size, respectively.

ShowAll saves the current height and width in custom form properties,

then calls another method, FindLargest, to determine the height and
width required to show all objects on the form. Then, if the form

changes object and font sizes when resized, that feature and
anchoring on the form are turned off. Then the form is resized. Here's

the code for ShowAll:

LOCAL oObject, nMaxRight, nMaxBottom, nAnchor
nMaxRight = This.Width
nMaxBottom = This.Height
This.nHoldWidth = This.Width
This.nHoldHeight = This.Height
This.lHoldChangeFont = This.lChangeFontOnResize
IF This.ScrollBars <> 0
 This.FindLargest(This, @nMaxRight, @nMaxBottom)
 IF m.nMaxRight > This.Width OR ;
 m.nMaxBottom > This.Height
 IF This.lChangeFontOnResize
 This.lChangeFontOnResize = .F.
 * Need to turn off anchoring so resize works
 This.TurnOffAnchors()
 ENDIF
 * Adjust stored value to account for scrollbars
 IF m.nMaxRight > This.Width
 This.nHoldHeight = This.nHoldHeight + SYSMETRIC(14)
 ENDIF

 IF m.nMaxBottom > This.Height
 This.nHoldWidth = This.nHoldWidth + SYSMETRIC(15)
 ENDIF
 This.Width = m.nMaxRight
 This.Height = m.nMaxBottom

 * Let drawing catch up
 DOEVENTS FORCE
 ENDIF
ENDIF
RETURN

The DOEVENTS command lets the form finish resizing and redrawing
before the capture.

FindLargest is a simple method that traverses the object hierarchy of
the form, finding the right-most and bottom-most positions for any

objects:

* Find the objects at the extreme of the form
LPARAMETERS nMaxRight, nMaxBottom
LOCAL oObject
FOR EACH oObject IN This.Objects
 IF PEMSTATUS(oObject, "Left", 5) AND ;
 PEMSTATUS(oObject, "Width", 5)
 IF oObject.Left + oObject.Width > m.nMaxRight
 nMaxRight = oObject.Left + oObject.Width
 ENDIF
 ENDIF
 IF PEMSTATUS(oObject, "Top", 5) AND ;
 PEMSTATUS(oObject, "Height", 5)
 IF oObject.Top + oObject.Height > m.nMaxBottom
 nMaxBottom = oObject.Top + oObject.Height
 ENDIF
 ENDIF
ENDFOR
RETURN

The custom TurnOffAnchors method goes through the top-level objects
on the form, stores their Anchor properties in a collection so you can

restore them later, and sets Anchor to 0 for each. It's sufficient to do
this only at the top level since anchoring won't kick in for contained

objects when the container has anchoring turned off.

LOCAL oObject, oAnchorData
This.oAnchors = CREATEOBJECT("Collection")
FOR EACH oObject IN This.Objects
 IF PEMSTATUS(oObject, "Anchor", 5) AND ;
 oObject.Anchor <> 0
 oAnchorData = CREATEOBJECT("Empty")
 ADDPROPERTY(oAnchorData, "oObject", m.oObject)
 ADDPROPERTY(oAnchorData, "nAnchor", ;
 oObject.Anchor)
 This.oAnchors.Add(oAnchorData)

 oObject.Anchor = 0
 ENDIF
ENDFOR

RETURN

The Restore method undoes all this. It resets the form's size, and if
appropriate, turns anchoring back on:

IF This.nHoldHeight <> This.Height OR ;
 This.nHoldWidth <> This.Width

 This.Height = This.nHoldHeight
 This.Width = This.nHoldWidth

 IF This.lHoldChangeFont
 This.TurnOnAnchors()
 This.lChangeFontOnResize = This.lHoldChangeFont
 ENDIF
ENDIF

TurnOnAnchors simply spins through the collection created in
TurnOffAnchors and restores the original values:

LOCAL oAnchor
FOR EACH oAnchor IN This.oAnchors
 oObject = oAnchor.oObject
 oObject.Anchor = oAnchor.nAnchor
ENDFOR
This.oAnchors = .null.

I modified PrintObject to call ShowAll before capturing the form, and to

call Restore following the capture:

This.ShowAll()
loCaptureBmp = ;
 This.oGDIPlusSystem.Drawing.Bitmap.FromScreen(;
 Thisform.HWnd)
loCaptureBmp.Save(cFileName, ;
 This.oGDIPlusSystem.Drawing.Imaging.ImageFormat.BMP)
lPortrait = (This.Height > This.Width)
This.Restore()

There's one final issue. When the code runs, there's a "flash" as the

form is resized and then restored. I tried using LockScreen to prevent
the flash, but that defeated the purpose of resizing, since the

FromScreen method takes a "picture" of what it actually sees.
Ultimately, I decided that the users would interpret the flash as

something happening.

That's all, folks

By adding PrintObject to my base form class, every form in this

application can print itself. Thanks to the efforts of the GDIPlusX team,
what could have been a really difficult task turned out to be reasonably

straightforward, and I got a reminder of the value of looking at other

people's code.

A form class incorporating this technique is included on this month's

Professional Resource CD. You'll need to download and unzip the
GDIPlusX libraries (from

http://www.codeplex.com/VFPX/Wiki/View.aspx?title=GDIPlusX) and
set an appropriate path before using the printing functionality.

http://www.codeplex.com/VFPX/Wiki/View.aspx?title=GDIPlusX

